Утомление мышц наступает медленнее при средней нагрузке. Как нагрузка влияет на развитие утомления мышц и как быстро восстановить силы? Какая нагрузка влияет на развитие мышечного утомления

Физическое утомление - временное понижение или прекращение работоспособности мышц, вызванное их работой. Утомление регистрируется на эргограмме; оно проявляется в том, что снижается высота сокращения мышцы или происходит полное прекращение ее сокращений. При утомлении мышца нередко не может полностью расслабиться и остается в состоянии длительного укорочения (контрактуры). Утомление является сначала результатом изменений функций нервной системы, и прежде всего головного мозга, нарушения передачи нервных импульсов между нейронами и между двигательным нервом и мышцей, а затем уже следствием изменения функций самой мышцы.


Так как при утомлении понижаются функции нервной системы и рецепторов мышц, суставов и сухожилий, то наступают нарушения координации движений.

Мышечное утомление является результатом не только изменения функций нервной и мышечной систем, но и изменения регуляции нервной системой всех вегетативных функций.

Утомление при динамической работе наступает в результате изменения обмена веществ, деятельности желез внутренней секреции и других органов и в особенности сердечно-сосудистой и дыхательной систем. Снижение работоспособности сердечно-сосудистой и дыхательной систем нарушает кровоснабжение работающих мышц, а следовательно, доставку кислорода и питательных веществ и удаление остаточных продуктов обмена веществ.

Скорость наступления утомления зависит от состояния нервной системы, частоты ритма, в котором производится работа, и от величины груза (нагрузки). Увеличение нагрузки и учащение ритма ускоряет наступление утомления.

При утомлении нередко появляется усталость - ощущение утомления, которое отсутствует, если работа вызывает интерес. Наоборот, когда работа производится без интереса, усталость наступает раньше и она больше, хотя признаки утомления отсутствуют. Способность приходить в состояние утомления называется утомляемостью. Утомление вызывается также обстановкой, в которой оно раньше возникало. Если же работа была интересной и не вызывала усталости и утомления, то обстановка, в которой она производилась, не вызывает усталости и утомления. Изменение обстановки, в которой многократно возникало утомление, или многодневный, длительный отдых приводят к исчезновению условного рефлекса на утомление.

Мышечное утомление является нормальным физиологическим процессом. Восстановление работоспособности мышц происходит уже во время выполнения работы. После окончания работы работоспособность не только восстанавливается, но и превышает исходный ее уровень до работы.

Рис. 32. Изменение работоспособности в дни отдыха после предельной работы

Утомление нужно отличать от переутомления.

Переутомление - нарушение функций организма, патологический процесс, вызванный хроническим утомлением, суммированием утомления, так как отсутствуют условия для восстановления работоспособности организма.

Важно предупредить появление переутомления. Наступлению переутомления способствуют антигигиенические условия труда, физических упражнений, внешней среды, нарушение питания.

При переутомлении появляются хронические головные боли, большая раздражительность, апатия, вялость, днем сонливость, нарушение сна ночью и бессонница, ухудшение аппетита, мышечная слабость. Нарушается координация мышечной работы и вегетативных функций, происходят снижение обмена веществ и падение веса тела, учащение, а иногда значительное замедление сердцебиений, понижение кровяного давления, уменьшение дыхательного объема и др. Нет желания заниматься трудом, физической культурой и спортом, особенно тем его видом, который вызвал переутомление.

Создание нормальных гигиенических условий физического труда и физических упражнений, переключение на новый интересный вид физического труда и спорта, перевод в другую обстановку, длительный отдых, увеличение времени пребывания на свежем воздухе и сна, улучшение питания, прием углеводов и витаминов устраняют переутомление.

Утомление - это временное снижение работоспособности мыши в результате работы. Утомление изолированной мышцы можно вызвать ее ритмическим раздражением. В результате этого сила сокращений прогрессирующе уменьшается (рис). Чем выше частота, сила раздражения, величина нагрузки тем быстрее развивается утомление. При утомлении значительно изменяется кривая одиночного сокращения. Увеличивается продолжительность латентного периода, периода укорочения и особенно периода расслабления, .но/снижается амплитуда (рис.) Чем сильнее утомление мышцы, тем больше продолжительность этих периодов. В некоторых случаях, полного расслабления не наступает, развивается контрактура. Это состояние непроизвольного длительного сокращения мышцы. Работа утомление мышц исследуются с помощью эргографии. В прошлом веке, на основании опытов с изолированными мышцами, было предложено 3 теории мышечного утомления.

1)Теория Шиффа: утомление является следствием истощения энергетических запасов, а мышце.

2. Теория Пфлюгера: утомление обусловлено накоплением в мышце продуктов обмена.

3. Теория Ферворна: утомление объясняется недостатком кислорода в мышце. Действительно эти факторы способствуют утомлению в экспериментах на изолированных мышцах. В них нарушается ресинтез ЛТФ. накапливается молочная и пировиноградная кислоты, недостаточно содержание кислорода. Однако в организме интенсивно работающие мышцы, получают необходимый кислород, питательные вещества, освобождаются от метаболитов за счет усиления общего и регионального кровообращения. Поэтому были предложены другие теории утомления. В частности, определенную роль в утомлении принадлежи? нервно-мышечным синапсам. Утомление в синапсе развивается из-за истощения запасов нейромедиатора. Однако главная роль, в утомлении двигательного аппарата принадлежит моторным центрам ЦНС. В прошлом веке И.М.Сеченов установил, что если наступает утомление мышц одной руки, то их работоспособность восстанавливается быстрее при работе другой рукой или ногами. Он считал, что это связано с переключением процессов возбуждения с одних двигательных центров на другие. Отдых с включением других мышечных групп он назвал активным. В настоящее время установлено, что двигательное утомление связано с торможением соответствующих нервных центров, в результате метаболических процессов в нейронах, ухудшением синтеза нейромедиаторов. и угнетением синаптической передачи.

Двигательные единицы

Основным морфо-функциональным элементов нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемым его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. Двигательные единицы мелких мышц, осуществляющих гонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных, их сотни раз больше. Все ДЕ в зависимости от функциональных особенностей делятся_на_3_группы:

I. Медленные неутомляемые. Они образованы красными мышечными волокнами, в которых меньше миофнбрил. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят тоническим. Регуляция сокращений таких, волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек.

Пример, камбаловидная мышца. Н В. Быстрые, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются "белыми". Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными, Мотонейроны этих.."11^ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза.

II А. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.

Физиология гладких мышц

Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желёз мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы поперечности клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной почёрченности. Последнее связано с тем, что сократительный аппарат не обладает упорядоченным строением. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляющихся к разным участкам сарколеммы. Миозиновые протофибриллы расположен рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением - нексусами, что обеспечивает распространение возбуждения по всей гладкомышечной структуре. Возбудимость и проводимость гладких мышц ниже. чем скелетных. Мембранный потенциал составляет 40-60 мВ, так как мембрана ГМК имеет относительно высокую проницаемость для ионов натрия. Причем у многих гладких мышц МП не постоянен. Он периодически уменьшается и вновь возвращается к исходному уровню. Такие колебания называют медленными волнами (МВ). Когда вершина медленные полны достигает критического уровня деполяризации, на ней начинают генерироваться потенциалы действия. сопровождающиеся сокращениями (рис). МВ и ПД проводятся по гладким мышцам со скоростью всего от 5 до 50 см/сек. Такие гладкие мышцы называют спонтанно активными, т.е. они обладают автоматией. Например за счет такой активности происходит перистальтика кишечника. Водители ритма кишечной перистальтики расположены в начальных отделах соответствующих кишок.

Генерация ПД в ГМК обусловлена входом в них ионов кальция. Механизмы электромеханического сопряжения также отличаются. Сокращение развивается за счет кальция, входящего в клетку во время ПД, Опосредует связь кальция с укорочением миофибрилл важнейший клеточный белок - кальмодулин.

Кривая сокращения также отличается. Латентный период, период укорочения, а особенно расслабления значительно продолжительнее, чем у скелетных мышц. Сокращение длится несколько секунд. Гладким мышцам, в отличие от скелетных свойственно явление пластического тонуса. Это способность длительное время находится в состоянии сокращения без значительных энергозатрат и утомления. Благодаря этому свойству поддерживается форма внутренних органов и тонус сосудов. Кроме того, гладкомышечные клетки сами являются рецепторами растяжения. При их натяжении начинают генерироваться ПД, что приводит к сокращению ГМК. Это явление называется: миогенным механизмом регуляции сократительной активности.

Изменение структуры мыши с возрастом

Анатомически у новорожденных имеются все скелетные мышцы, но относительно, веса тела они составляют всего 23% (у взрослого 44 %). Количество мышечных подокон в мышцах такое же как у взрослого. Однако микроструктура Мышечных волокон отличается.; Волокна меньше диаметром, в них больше ядер. По мере роста происходит. утолщение и удлинение волокон. Это происходит за счет утолщения миофибрилл, оттесняющих ядра на периферию. Размеры мышечных волокон стабилизируются к 20 годам.

Мышцы у детей эластичнее, чем у взрослых. Т.е. быстрее укорачиваются при сокращении и удлиняются при расслаблении. Возбудимость и лабильность мышц новорожденных, ниже чем взрослых, но с возрастом растет. У новорожденных даже во сне мышцы находятся в состоянии тонуса. Развитие различных групп мышц происходи г неравномерно. 84-5 лет более развиты мышцы предплечья, отстают в развитии мышцы кисти. Ускоренное согревание мышц кисти происходит в 6 - 7 лет. Причем разгибатели развиваются медленнее сгибателей. С возрастом изменяется соотношение тонуса мышц. В раннем детстве повышен тонус мышц кисти, разгибателей бедра т.д. постепенно распределение тонуса нормализуется.

Показатели силы и работы мыши в процессе роста

С возрастом сила мышечных сокращений увеличивается. Это объясняется не только увеличением мышечной массы, ни и совершенствованием двигательных рефлексов. Например, сила кисти с 5 до 16 лет возрастает в - 6 раз, мыши ног в 1 - 2,5 раза. Показатели силы до 10 лет больше у мальчиков. С 10 - 12 лет у девочек. Способность к быстрым и тонким движениям достигает оптимума к 14 годам, выносливость к 17. В 10 - 11 лет ребенок способен выполнять работу мощностью 100 вт, 18 -19- летние 250 - 300 вт.

Утомление - это временное снижение или потеря работоспособности, т. е. результат предшествовавшей . Утомление мышцы в организме в условиях кровообращения зависит не только от величины произведенной ею длительной работы, а от числа поступающих к ней волн возбуждения, вызывающих ее сокращение. При той же частоте раздражения и других равных условиях утомление появляется раньше при большей нагрузке мышцы. При той же нагрузке и других равных условиях утомление наступает раньше при более частых раздражениях. В начале работы высота сокращений увеличивается, а затем признаками развивающегося утомления являются постепенное уменьшение высоты сокращений, увеличение их продолжительности и нарастание контрактуры. Развитие утомления зависит от изменения , кровообращения, и других условий. Чем выше обмен веществ и лучше кровообращение, тем позднее наступает утомление. Оно наступает значительно раньше, когда мышца сокращается, растягиваясь грузом при изометрическом сокращении, и позднее в том случае, когда она сокращается без груза, а следовательно, без напряжения.

Если довести мышцу до полного утомления раздражением , то после перемены направления тока ее работоспособность сразу восстанавливается. Это восстановление объясняется изменением состояния мышцы и сдвигами ионов на полюсах тока. Изолированная мышца уменьшает свою работу или даже перестает сокращаться, когда запас гликогена составляет половину исходного количества. Эти факты не подтверждают теорию истощения (Шифф, 1868), которая объясняет утомление мышцы израсходованием веществ, освобождающих для ее работы. Однако запасы гликогена в организме человека ограничены и составляют 300-400 г. При очень интенсивной работе они потребляются за 1,5-2 ч, что приводит к такому снижению содержания сахара в , при котором работа становится невозможной. Введение сахара в организм восстанавливает его работоспособность.

Теория отравления мышцы при утомлении накапливающимся в ней особым ядом - кенотоксином (Вейхардт, 1904) оказалась необоснованной. Но есть доказательства того, что утомление иногда связано с отравлением возбуждающихся структур продуктами обмена веществ, главным образом фосфорной и молочной кислотами в момент их образования. Остаточные продукты обмена веществ как бы засоряют организм и вызывают утомление - теория засорения (Пфлюгер, 1872).

Накопление фосфорной и молочной кислот уменьшает работоспособность мышцы. Изолированное мышечное волокно в отличие от целой мышцы утомляется значительно позднее при одном и том же числе раздражающих импульсов. Это объясняется тем, что конечные продукты обмена веществ быстрее удаляются из него. В тренированной мышце вследствие большого ускорения анализа и синтеза веществ, обеспечивающих ее работу, утомление наступает позднее. После промывания кровеносных сосудов изолированной мышцы, доведенной до полного утомления, следовательно, после удаления из нее части остаточных продуктов обмена веществ она вновь начинает сокращаться несмотря на то, что не восстановился запас углеводов и кислорода. Эти факты доказывают, что остаточные продукты распада веществ, образующиеся в работающей мышце, - одна из причин ее утомления.

Существует также теории удушения (М. Ферворн, 1903), приписывающая главную роль в утомлении недостатку кислорода. Известно, что работа может продолжаться десятки минут и даже часы без утомления, когда.уровень потребления кислорода ниже предела его поступления, возможного для работающего (истинное устойчивое состояние). Когда потребление кислорода достигает максимума, оно может находиться на постоянном уровне, но не обеспечивает потребность организма в кислороде (кажущееся, или.южное, устойчивое состояние) и работа в этом случае может продолжаться не больше 10-40 мин.

Утомление является нормальным физиологическим процессом, который приводит к прекращению работы. Во время перерывов в работе восстанавливается работоспособность мышц. Поэтому обоснованность участия мелочной и фосфорной кислот в наступлении утомления не позволяет сделать нелепый вывод о том, то труд вреден, так как он, якобы, ведет к отравлению. Нельзя ставить знак равенства между утомлением изолированной мышцы и утомлением всего организма, в котором наступление утомления зависит от изменения функций нервной системы и желез внутренней секреции и от изменения регуляции центральной нервной системой обмена веществ, кровообращения и дыхания. Развитие утомления зависит от снижения работоспособности системы кровообращения, в особенности сердца, и дыхательной системы.

В нормальных условиях при длительной физической работе возбуждение и сокращение мышцы - два взаимосвязанных процесса, которые происходят при потреблении кислорода, так как они осуществляются благодаря очень сложным химическим процессам, завершающимся окислением остаточных продуктов обмена веществ. Работоспособность мышц после утомления восстанавливается в результате окисления этих продуктов. Поэтому потребление кислорода при мышечной работе значительно увеличивается. Если кислорода поступает недостаточно, то при интенсивной мышечной работе наступает недостаток кислорода - кислородный долг. В условиях недостаточности кислорода во время работы функции нервной системы понижаются, что является основной причиной утомления. Кислородный долг погашается благодаря усиленному кровообращению и дыханию не только во время работы, но и после ее окончания. Это погашение кислородного долга заканчивается только после полного окисления остаточных продуктов обмена веществ, образовавшихся во время работы, и полного окончания восстановительных процессов.

В нервно-мышечном препарате утомление развивается в области мионеврального соединения. Основная теория утомления, приписывающая главную роль его развитию в центральной нервной системе целого организма, сформулирована И, М, Сеченовым (1902).

Имеются многочисленные доказательства ведущей роли центральной нервной системы в развитии утомления. Утомлена наступает при действии условных раздражителей. При утомлении усиливается торможение условных и безусловных рефлексов. На развитие утомления влияют приток афферентных импульсе; в головной мозг, эмоции. Сознательная, произвольная мышечная деятельность утомляет больше, чем непроизвольная, автоматическая. Существенное значение для наступления утомления имеет функциональное состояние головного мозга, которое изменяет: при гипоксемии, гипогликемии, гипертермии, накоплении метаболитов в крови, сдвигах функций внутренних органов, особенно сердечнососудистой и дыхательной систем.

Временное понижение работоспособности целого организма, органа или ткани, наступающее после работы, называют утомлением.

Утомление исчезает после более или менее продолжительного отдыха. Утомление изолированной мышцы легче можно наблюдать, если воздействовать на нее частыми раздражениями.

Высота сокращений такой мышцы постепенно уменьшается, пока мышца, наконец, не перестанет сокращаться. Чем чаще наносится раздражение, тем быстрее наступает утомление (рис.).

Изучение утомления у человека производится при помощи специального прибора - эргографа (рис. 2).

Рис. БЫСТРОТА НАСТУПЛЕНИЯ УТОМЛЕНИЯ ПРИ РАЗЛИЧНОЙ ЧАСТОТЕ РАЗДРАЖЕНИЙ 1-сокращение с частотой-один раз в секунду; 2 — сокращения с частотой один раз в 2 секунды: 3 - сокращения с частотой один раз в 4 секунды.

Эргограф представляет собой прибор, в котором фиксируются предплечье, кисть, II и IV пальцы исследуемого. К среднему пальцу подвешивают груз и исследуемому предлагают поднимать и опускать его, сгибая и разгибая палец. Изменяя ритм работы, величину груза или и другое, можно изучить явление утомления, наступающее у человека в разных условиях.

Кривая, которая при этом получается, называется эргограммой (рис. 3).

Для изучения рабочих движений И. М. Сеченовым был сконструирован специальный эргограф, при помощи которого исследуемый воспроизводил движения, совершаемые при пилке ручной пилой.

Для объяснения утомления было выдвинуто несколько теорий. Одни объясняли утомление тем, что в результате работы энергетические запасы истощились, другие же предполагали, что причиной утомления является засорение мышц продуктами распада. Однако ни одна из выдвинутых теорий не пред ставляла исчерпывающего объяснения явлений утомления. При усиленной работе в мышце действительно образуются продукты распада, в частности молочная кислота, которая в значительной степени влияет на наступление утомления в работающей мышце, происходит расходование энергетических запасов и т. д., но ни один из этих процессов в отдельности не может быть положен в основу объяснения утомления. Все эти теории игнорировали роль нервной системы при наступлении утомления.

Между тем исследованиями И. М. Сеченова, И. П. Павлова, Н. Е. Введенского и А. А. Ухтомского было показано, что в длительном сохранении работоспособности и в наступлении утомления решающую роль играет центральная .

Рис. 2 Эргограф, 1 — цилиндр для записи, 2- записывающий рычажок, 3- стойка, 4- держалка для руки, 5 — груз

Наступление утомления мышцы при рефлекторном влиянии в специальном опыте наблюдал Н. Е. Введенский. Этот опыт был поставлен на такой мышце, сокращение которой можно было рефлекторно вызвать раздражением двух разных центростремительных нервов. Раздражением одного из этих нервов достигалось утомление мышцы. Когда становилось очевидным, что мышца утомилась, наносилось раздражение другому центростремительному нерву. На это раздражение мышца отвечала сокращением прежней силы. Отсюда был сделан вывод, что утомление в первую очередь наступает не в мышце, а в центральной нервной системе (нервное волокно практически неутомляемо).

Влияние коры головного мозга было показано в опыте, когда исследуемому, совершающему значительную работу, внушалось, что он выполняет легкую работу; при этом расход энергии уменьшался, хотя интенсивность работы не понижалась.

При совершении же легкой мышечной работы энергетические затраты резко возрастают, если исследуемому внушить, что он выполняет тяжелую физическую работу.

Влияние вегетативной нервной системы, в частности ее симпатического отдела, на утомление было показано советскими учеными Л. А. Орбели и А. Г. Гинецинским.

После того как было вызвано утомление мышцы лягушки, раздражали симпатическую нервную систему и наблюдали восстановление работоспособности мышцы. Раздражение симпатического нерва вызывает изменение обменных процессов, протекающих в мышце, в результате чего наступает восстановление работоспособности.

Таким образом, впервые было доказано влияние вегетативной нервной системы на процессы, которые протекают в скелетной мышце.

Рис 3. Эргограмма

Симпатическая , играющая, как было описано выше, важную роль, сама находится под непосредственным регулирующим влиянием центральной нервной системы. Любая мышечная деятельность возможна только благодаря координации со стороны центральной нервной системы, куда в свою очередь непрерывно поступает целый ряд импульсов от рецепторов разных органов, принимающих участие в работе.

Широко распространено мнение, что наилучшим способом восстановления работоспособности является полный покой. Однако исследования И. М. Сеченова доказали ошибочность такого представления. Он сравнивал восстановление работоспособности утомленной в результате длительной работы правой руки в условиях полного отдыха, а также в условиях, ко гда левая рука производила определенную работу, т. е. во вре мя активного отдыха. Оказалось, что работоспособность восстанавливается быстрее при активном отдыхе, чем при пассивном.

Предполагается, что поток импульсов, который направляется от работающей руки в центральную нервную систему, действует возбуждающе на утомленные или впавшие в торможение участки центральной нервной системы.

Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.

Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен груз, то амплитуда ее сокращений постепенно убывает, пока не дойдет до нуля. Полученная таким образом кривая называется кривой утомления.

Наряду с изменением амплитуды сокращения при утомлении нарастает латентный период сокращения и увеличиваются пороги раздражения и хронаксия, то есть понижается возбудимость. Эти изменение возникают не сразу после работы, а спустя некоторое время, в течение которого наблюдается увеличение амплитуды одиночных сокращений мышцы. Этот период называется периодом врабатывания. При дальнейшем длительном раздражении развивается утомление мышечных волокон.

Понижение работоспособности изолированной из организма мышцы при ее длительном раздражении обусловлено двумя основными причинами: первой из них является то, что во время сокращений в мышце накапливаются продукты обмена веществ (в частности, молочная, фосфорная кислоты и т. д.), оказывающие угнетающее влияние на работоспособность мышцы. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия.

Если изолированную мышцу, помещенную в раствор Рингера, довести длительным раздражением до полного утомления, то достаточно только сменить омывающую ее жидкость, чтобы восстановить сокращения мышцы.

Другой причиной развития утомления изолированной мышцы является постепенное истощение в ней энергетический запасов. При длительной работе изолированной мышцы происходит резкое уменьшение запасов гликогена, вследствие чего нарушаются процессы ресинтеза АТФ и креатинфосфата, необходимых для осуществления сокращения.

Утомление нервно-мышечного препарата обусловлено следующими причинами. При длительном раздражении нерва нарушение нервно-мышечной передачи развивается задолго до того, как мышца, а тем более нерв в силу утомления утрачивает способность к проведению возбуждения. Объясняется это тем, что в нервных окончаниях при длительном раздражении уменьшается запас "заготовленного" медиатора. Поэтому порции ацетилхолина, выделяющиеся в синапсах в ответ на каждый импульс, уменьшаются и постсинаптические потенциалы снижаются до подпороговых величин.

Наряду с этим при длительном раздражении нерва происходит постепенное понижение чувствительности постсинаптической мембраны мышечного волокна к ацетилхолину. В результате уменьшается величина потенциалов концевой пластинки. Когда их амплитуда падает ниже некоторого критического уровня, возникновение потенциалов действия в мышечном волокне прекращается. По этим причинам синапсы быстрее утомляются, чем нервные волокна и мышцы.

Следует отметить, что нервные волокна обладают относительной неутомляемостью. Впервые Н.Е. Введенский показал, что нерв в атмосфере воздуха сохраняет способность к проведению возбуждений даже при многочасовом непрерывном раздражении (около 8 часов).

Относительная неутомляемость нерва отчасти зависит от того, что нерв тратит при своем возбуждении сравнительно мало энергии. Благодаря этому процессы ресинтеза в нерве в состоянии покрывать его относительно малые расходы при возбуждении даже в том случае, если это возбуждение длится много часов.

Необходимо отметить, что утомление изолированной скелетной мышцы при ее прямом раздражении является лабораторным феноменом. В естественных условиях утомление двигательного аппарата при длительной работе развивается более сложно и зависит от большего числа факторов.

1. В организме мышца непрерывно снабжается кровью, и, следовательно, получает с ней определенное количество питательных веществ (глюкоза, аминокислоты) и освобождается от продуктов обмена, нарушающих нормальную жизнедеятельность мышечных волокон.

2. В целом организме утомление зависит не только от процессов в мышце, но и от процессов, развивающихся в нервной системе, участвующих в управление двигательной деятельностью.

Так, например, утомление сопровождается дискоординацией движений, возбуждением многих мышц, которые не участвуют в совершении работы.

Что еще почитать